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sistently prepared. The standard deviation of six 
crystals was approximately _+0.012 p.p.m. One crystal 
of PERFX was measured by X-ray and optical 
interferometry (Deslattes & Henins, 1973) to give d2~ 0 
(25°C) = 1.9201715 A _+ 0.30 p.p.m, and this was 
later confirmed as 1.9201718 A _+ 0.25 p.p.m. 
(Deslattes et al., 1974) but altered to 1.9201706 A _+ 
0.15 p.p.m. (Deslattes, Henins, Schoonover & Carroll, 
1976) following the correction of a systematic error. 
Under vacuum the Bragg spacing is 0.34 p.p.m, larger. 
Since this precision is far below the reproducibility 
of PERFX and is comparable with the range of lattice 
parameters measured in Table 1 for float-zoned silicon, 
it would seem that any source of such silicon could be 
used to access the absolute value of lattice spacing. 
IR absorption measurements can be used to measure the 
carbon concentration and the necessary correction is 
(Baker et al., 1968) dd/d = - 6 . 5  × 10-24n c where 
n c is the number of carbon atoms per cm a. 

At a rather lower precision one can have access to 
the PERFX lattice parameter by using Czochralski- 
grown oxygen-contaminated silicon. After IR deter- 
mination of the oxygen concentration the lattice- 
parameter shift can be calculated from Ad/d = +3-8 x 
10-24no where n o is the number of oxygen atoms 
per cm 3. 

Within the errors of measurement all of the values 
in the right-hand column of Table 1 are therefore 
effectively on the absolute scale. 

Hubbard, Swanson & Mauer (1975) have recently 
announced that a large quantity of powdered float- 
zoned silicon has been made available for calibration 
purposes in powder diffractometry. Since they were 
only concerned with reproducibility to 10 p.p.m, and 
not with absolute lattice spacings, it seems that the 
important attribute of this proposed standard is not the 
manifestly well defined lattice parameter of the starting 
material but the ill defined quality of the resultant 
powder. The wording of their recommendation that one 

uses 'the powder diffraction value of 5.430880 A for 
the lattice parameter of the Standard Reference 
Material silicon' is amazing. The lattice parameter of 
Deslattes et al. (1976) for PERFX was 5.43106446 A, + 
0.15 p.p.m, in vacuum. 

One of the authors is pleased to thank the British 
Council for a scholarship. The automatic diffractom- 
eter system was constructed with a grant from the 
Paul Instrument Fund. We are especially grateful to 
John Burrow who oriented, cut and polished all of the 
samples and to those listed in Table 1 who provided 
samples of silicon for this survey. 
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Accurate values (~0.05%) of the absorption-weighted mean path lengths for spheres as a function ofpR and 
0 have been calculated by differentiation of the table of values of absorption corrections [Dwiggins (1975). 
Acta Cryst. A31, 395-396]. 
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Introduction 

The absorption-weighted mean path length, T, needed 
in extinction corrections, has been calculated for 
spheres from the approximate formula (Coppens & 
Hamilton, 1970) 

lnA* 

where A* is the absorption correction factor and/~ the 
linear absorption coefficient. This expression, however, 
is inappropriate for /tR > 0.25 (Becker & Coppens, 
1974). The correct formula is 

1 dA* 

A* d~ 

but there are no tabulated values of the derivative, 
dA*/d/t, available. With absorption corrections of high 
precision, such as those given by Dwiggins (1975), it is 
possible to calculate the derivative from the table of A* 
values. 

Method 

We may write 

1 d A * _ R  [ 1 d A * ]  
A* dH A-* d-G-R-)J ' 

where R is the radius of the sphere. The absorption 
corrections for a sphere are given in a table of A* values 
as a function of#R and 0, [~R = 0, 0.1, 0.2 . . . .  0 -- 0., 
5., 10., . . . .  90.1, where 0 is the Bragg angle of a 
reflection. 

To calculate the value of dA*/d~R)  at one of the 
points of this grid, we fix a fourth-order polynomial 
through the points (~R + 0.2, #R + 0 .1 , / tR;  0) and 
determine the derivative at (/zR,0). The equations are 
given in the Appendix. This method is clearly not 
applicable for the points on the grid with ~tR = 0 and 
/~R = 0.1 since no values exist for A* at/tR = - 0 . 2  and 
-0 .1 .  

For/~R = 0, we know that A* = 1 and T = ~R for a 
sphere. Hence 

1 dA* ] 3 

A* d(/tR) .R=o 2 

For the points at pR = 0.1, we have chosen to fix a 
fourth-order polynomial passing through (,uR = 0., 0.1, 
0.2, 0-3; 0) and with [dA*/d(,uR)]uR=o = ~. The 
equations are given in the Appendix. We prefer to keep 
the results in the form of (1/A*)(dA*/dpR) as a two- _ 
dimensional function of 0 and pR rather than T as a 
three-dimensional function of 0, /t and R. We have 
implemented this method in a Fortran program 
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S P H C O R .  The A* data for/ tR from 0.0 to 2.5 are 
taken from Dwiggins (1975) and the values of 
(1/,4*)(clA*/dltR) are given in Table 1. T values are 
retrieved by multiplying (1/A*)(dA*/dl tR)  by R at the 
appropriate values of/tR and 0. 

The accuracy of the table of A* values (Dwiggins, 
1975) is claimed to be 0.05%. We have compared the 
values of A* of Dwiggins and ~r calculated by the 
present method with values given by a Gaussian-grid 
integration program of unknown accuracy obtained 
from Cromer (1977). For example, for a value of/tR = 
1.0 we find relative discrepancies in the A* values of 
0.06% (0 = 0 °) and 0.1% (0 = 90°), whereas those in 
the T values are 0.03% (0 = 0 °) and 0.05% ( 0 =  90°). 
We conclude that the accuracy of our T table is about 
0.05%. 

This work was supported by the Swiss National 
Science Foundation under project No. 2.173-0.74. 

APPENDIX 

1. We desire the derivative dy /dx  at x = 0 for a fourth- 
order polynomial passing through the points 

( -  2x ,y  2-) ( - x , y _ )  (O,yo) (x,y + ) ( 2x ,y  2 + ). 

Thus we fix 

y = A x  4 + B x  3 + Cx  2 + D x  + E (1) 
and 

dy 
= 4 A x  3 + 3 B x  2 + 2Cx  + D 

dx  

o 
X = 0  

491 

Substituting for the values of the points in (1), we 
obtain 

Y2- = 16Ax  4 - -  8 B x  3 + 4Cx  2 -- 2Dx  + E 

Y_ = A x  4 - B x  3 + Cx  2 - D x  + E 

Yo = E 

Y+ = A x  4 + B x  3 + Cx  2 + D x  + E 

Yz+ = 1 6 A x  4 + 8 B x  3 + 4 C x  2 + 2 D x  + E. 

Solving for D, we find 

D=(dY)-~  x = 0 - Y 2 - - 8 y - + 8 y + - Y 2 + -  12x 

2. We desire (dy/dx)x=o for a fourth-order polynomial 
(1) passing through the points (-x,y_)(O~vo)(Xd,+)- 
(2x,y2+) and having (dy/dx)_ x = 1.5. Thus we obtain 

Y_ = A x  4 - B x  3 + C x  2 - D x  + E 

Yo = E 

Y+ = A x  4 + B x  3 + Cx  I + D x  + E 

Y2+ = 16Ax  4 + 8 B x  3 + 4 C x  2 + 2Dx  + E 

1.5 = - 4 A x  3 + 3 B x  1 -  2Cx  + D. 

Solving for D we find 

(d,)  1 
D = x--O 18x(--17Y- + 9y° + 9y+ --Y2+ --9x). 
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The reciprocal-lattice geometry of ganophyllite has been investigated by X-ray diffraction, two distinct 
variants being noted. These structures, comprising a monoclinic form and a hitherto unreported triclinic 
variant, can both be interpreted in terms of structural columns which can be stacked in varying sequences 
along either of the {011/ planes. Diffracted intensities from models of this type for both variants give good 
agreement with the distinctive pattern of intensities actually observed. With the structural column concept, it 
is also possible to explain instances of two-dimensionally disordered intergrowths of these structures. 


